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Almost Sure Quasilocality in the Random Cluster Model 
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We investigate the Gibbsianness of the random cluster measures ,u q'p and/2 q'p, 
obtained as the infinite-volume limit of finite-volume measures with free and 
wired boundary conditions. For q >  1, the measures are not Gibbs measures, 
but it turns out that the conditional distribution on one edge, given the con- 
figuration outside that edge, is almost surely quasilocal. 
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1. I N T R O D U C T I O N  

In recent years, it has become apparent (see ref. 1 and references therein) 
that not all states of pysical interest for statistical mechanics are Gibbs 
measures/21 Examples can be found in renormalization group theory, 
where applying renormalization group transformations to Gibbs states may 
lead out of the class of Gibbs measures.l~ Other examples come from the 
theory of interacting particle systems, where nonreversible processes may 
have non-Gibbsian stationary states. ~31 A general theory of non-Gibbsian 
states is not available. All one can do for the moment is investigate par- 
ticular models and try to classify the examples one has of non-Gibbsian 
states. One way of classification is the following. Gibbs states satisfy the 
property of quasilocality. This means that conditional expectations of local 
events are continuous functions of the configuration one conditions on. 
Non-Gibbsian states (if they are not non-Gibbsian for the reason that there 
are some constraints or hard-core interactions) lack this quasilocality 
property. A way of classification is therefore to look at how large the set 
is on which quasilocality fails. ~4) In many cases, this seems very difficult/5' 4) 
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In this paper we investigate the free and wired random cluster 
measures with q >  1 and 0 < p <  1. We show that we have almost sure 
quasilocality of  conditional distributions, but no quasilocality everywhere. 
At the same time it makes rigorous the common  wisdom that the random 
cluster model has nonlocal features. 

The paper is organized as follows. In Section 2 we present the model 
and state the main result of  the paper. In Section 3 we construct regular 
conditional distributions for our measures. In Section 4 a proof  of  almost 
sure quasilocality is given. 

2. MODEL A N D  M A I N  RESULT 

We consider the square lattice Z 2. The set of  edges of  Z 2 is denoted by 
Z2,. The model under consideration is the random cluster model. The con- 
figuration space is/2 = { 1, 0} z;. O n / 2  we put the product  topology and its 
Borel a-field ~ .  Configurations are denoted by co, r/, or (. The value of  ~o 
at eeZ2,  is 09,.; the restriction o f w  to A c Z .  is 09~ :=  { o 9 / e ~ A } .  To each 
edge e ~ Z .  we assign a variable Ze with values in {0, 1}, X~(co):=09~; 
Xe(w) = 1 declares the edge open and Ze(09) = 0  if the edge is closed. Two 
sites x, y are said to be connected if there is a finite path via open edges 
from x to y. A cluster is a maximal set of  connected sites. We fix 0 < p < 1 
and q >  1. For  the construction of  the free boundary  condition state, we 
start with a finite set of edges A = 77 2. We define a probability measure PA 
by its weights: 

1 N ( , )  i.tqip(q):=)zAP '~'(1--p)N~ c(~' if qe = 0 outside A 

otherwise 

(2.1) 

Z A is a normalization constant. N~(r//f) is the number  of  open edges of  r/ 
in A; No(r/A) is the number  of  closed edges of  r / in  A; c(r/) is the number  
of  clusters of  r/. 

We proceed in a similar way to construct the wired state fiq" P. The finite- 
volue measures fiq'P are defined by 

1 N f - - p  ,(.~)( 1 _p)NO(,,,)qC(,) if ]~e = 1 outside A 

otherwise 

(2.2) 
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The following results are well known/6~ 

L e m m a  1. 1. /2: q'p and /2  q'p have the F K G  property,  i.e., for any 
increasing functions g, h on s 

It~P(gh) >~It~P(g) lt~V(h) 

fiq'P(gh) >~fi.~'P(g) fiqiP(h) (2.3) 

2. For  any increasing function g o n / 2 ,  

/aq'P(g) <~lz~,V(g) 

~ q ~ P ( g )  ~ ~ q ' P  (2.4) 
.,~" l-r A,( g) 

i fA  c A ' .  

3. The weak limits pq'P := l ima/z~/p  and ~q'P :=l ima/2~/p exist. 

It  is also well known that  there exists a critical value Pc(q) for p above 
which there is percolation in the state pq'P and below which there is 
absence of percolation. By percolation is meant  the almost  sure existence 
of an infinite connected cluster. Off the critical point, it is believed that 
It q'p =fiq'P and that  there is thus a unique state for the model  (because free 
and wired boundary  conditions are extremal in the F K G  sense). It can be 
proven rigorously for q = 1, 2 .... by the existing connection with the Pot ts  
model (see ref. 6 for more  information on this). Thus lz "'p and )q'P can only 
differ at Pc(q), and they indeed do at high integer values of  q where one can 
make the connection with a first-order transition for the Potts  model. For  
notat ional  convenience we will drop the superscript q, p unless explicitly 
needed. 

Definit ion 1. We call a function g on f2 quasilocal at r / iff  for any 
e > 0, there exists a finite region A, such that  

sup Ig(r  < e  (2.5) 
(: 

(~fr = qA~ 

The following result is well known, t7"8" 1) 

t . e m m a  2. Let ~-e be the a-algebra of events not depending on co e. 
The measure p on s is a Gibbs  measure iff for every edge e there exists a 
version roe(X,. I" ) of  IF-pEZ~ I ~ " ]  satisfying: 

1. 0 ( 7 [ e ( X e  I - ) <  1. 

2. rc~(Xe I" ) is quasilocal at every r/e s 
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We can now state the main result of the paper. 

Theorem 1. Let p and fi be the probability measures constructed above. 
1. p is not a Gibbs measure. No version of n:~,[Ze [ ~-~] is quasilocal 

everywhere. 
2. There exists a version of E,[X~ I ~-~] which is quasilocal p-a.s. 

The same is true for ft. 

3. CONDITIONAL PROBABILITIES 

Let us now construct a version 7~e(Xe l" ) of the conditional probability 
IE~,[;G I ~ ] .  Let A be a finite subset ofT/,  and A ~ := 7/ , \A. We denote by 
0 the configuration in which every edge is closed and by 1 the configuration 
in which every edge is open. We define ~ze(;GI q) for all q=qAOAc as the 
conditional expectation of Xe with respect to PA; since those configurations 
are dense in g2, we then extend the definition by a limiting procedure. (The 
proof of the existence of the limit is given after the next lemma.) Thus, 

rG(Z~ I q) := lim ne(XelrlAOA~) 
A 

Similarly we construct a version r~e(Xr I" ) of Er [Zr I ~ e]: 

Lemma 3. 
function g 

Proof.. 

(3.1) 

(3.2) 

~e(xelqA 1Ac):=fiA(XelqA',le} 1Ac) (3.3) 

r~(X, It/) := lim ~,(Z, I qA 1Ac) (3.4) 
A 

Let V~ e be a finite subset of 7/2. For an ~e-measurable 

p v(rCe(X,I-) g)=ltv(Xeg) (3.5) 

fiv(fCe(X,I �9 ) g)=fiv(X~g) (3.6) 

We have 

/~,.(~.(x.I-) g)= f ~ ~(dco) rc~(X.] o~) g(o~) 

= f  pv(dw) rCe(Xe[OgvOw) g(OgvOw) 

= J'/l v(do9 ) IF~,,,[Xel~ e] g(o)) 

= P v(Xe g) 

The proof of the second statement is similar. I 
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Let us compute now more explicitly our expression for Z~e(2"elq). 
Denote by r/~ the configuration equal to r/ off e and equal to 0 on e and 
by r/~ the configuration equal to r /off  e and equal to 1 on e. Now 

#A(q') n,(Ze I q,,0Ac) =#Aq')  +#,(q0) (3.7) 

It is thus clear that 

Z~e(ZeIqAOAc)= +q(1 - - p )  
if C(tl~ ~) = c(q~OA~) + 1 

if C(tlOAoAr 
(3.8) 

The event where c(q ~ 0ac) = c(r/~ 0AC) -- 1 is impossible. Indeed, since isolated 
lattice sites are also counted as clusters, the creation of an open edge cannot 
increase the number of clusters. 

For any finite A we say that two sites x and y are connected inside A 
for the configuration r/ if they are connected for the configuration r/A 0A- 
Similarly, we say that two points are connected outside A for r/ if  they are 
connected for qA 1AC' Let e be the edge with sites x and y as endpoints. 
Define the following events: 

and 

E i A  := {x is connected to y inside A} 

Ei~ := [,.J E ~ 
n , A  

A 

Similarly, define 

and 

E~. A := {x is connected to y outside A} 

o(  )(An ) E~ := U E~ E~ n , A  U r'a,A 
A 

Let Z~ denote .the indicator function of E ~ .  Denote by 2 'o the indicator 
function of E ~ Then 

C(tlOOAO=C(q~OA,)+I iff r/~162 g n ,  A 

0 i c(qOOA~)=C(q~Oac) iff q e E n , , ,  

822/79/3-4-19 
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Now we want to take the limit A f 0o. If r/~ E ~ ,  there has to exist some 
i finite volume A such that qo~ E ~. A. Therefore, for each such q the limit 

over A exists and 

P 1 - Z~(q~ + px~(q  ~ n e ( X ~ l q ) - p + q ( l  - p ) (  

P I - (p  P ) ~ o - X~(r/ ) (3 .9)  
p + q ( 1 - p )  p + q ( 1 - p )  

It is clear that n,(Z,, [-) is a nonlocal, nonnegative, and increasing function, 
since q > 1. In a similar way 

z~e(X~ i r/A 1A~) = + q( 1 -- p) 

It is again clear then that 

c(,1 ~ l~c) = c(,1~, 1Ac) + 1 

c(q ~ 1 A~) = c ( ~ ,  1 ~ )  

if c(~/~ 1A~) = c(q~ ln~) -t- 1 

if c(~/~ 1 A~) = c(q~ 1 A~) 

(3.10) 

iff q~ r E ~  ~ 

iff t/~ ~ E " r-I,A 

For  q~ we already know that we can take the limit A ,~ ~ .  Thus now 
take q E O ,  q~ but ~/~162 This r / is  such that r /~  for all finite 
A. Thus, 

~=(g,, 1,1A 1A,) = P 

The limit over A thus exists and equals p. It is then clear that 

- P ( P )Z"(q ~ (3 .11)  
~e(~(elq) p + q ( l _ p i +  P p + q ( 1 - p )  

The expressions for ne(xe [. ) and r~e(Z~ [. ) differ thus on the set of configura- 
tions r/ such that in q0 both x and y are connected to infinity, but not to 
each other. 

The following lemma is an adaptation of  Lemma 3.1 in ref. 4. 

L e m m a  4. Let g be a monotone  bounded function. If 

then 

g(co) = lim g(OkAOA~ ) (3.12) 
A 

p(g)  = lira pA(g ) (3.13) 
A 
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If 

then 

g(r = lim g(coA 1A~) (3.14) 
A 

fi(g) = lira fiA(g) (3.15) 
A 

Proof We just prove (3.13) for monotone increasing functions. The 
proof of the other statements is similar. We denote gA(09):= g(o~AOAc ). 
Since g is increasing, gA <~ gA' for A c A ' .  Let M =  A ,--N, INI < ~ .  We 
have 

/2A(gu) ~</2A(g.4)=flA(g) ~llN(gA) (3.16) 

The left inequality is due to the above remark, the right one is due to 
Lemma 1 since g. is monotone increasing. Since g.  is a local function, we 
can take the limit over N, and get (Lemma 1 ) 

flA(gM) <~,ttA(g) ~< s up / -ZN (gA )  = f l ( g A )  (3 .17 )  
N 

By hypothesis, lim A gA= g; by the monotone convergence theorem we 
obtain 

P(gM) <<- lim inf/2A(g) ~< lim sup IrA(g) <~p(g) (3.18) 
A A 

Finally, taking the limit over M yields 

/t(g) ~< lim tUA(g) <~ tu(g) 
A 

I (3.19) 

P r o p o s i t i o n  1. Z~e(Xel') is a version of ~=,,Fx~l~'q. 
Proof. It suffices to prove that for any nonnegative increasing local 

~ -measu rab l e  function g 

/2(Z~ g) =/t(n,.(Z,, l" ) g) (3.20) 

Because both Xe and g are local, we have from weak convergence and 
Lemma 3 that 

/t(Xe g) = lim ItA(Xe g) 
A 

= lim/IA(~L(Xe I' ) g) (3.21) 
A 
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Now n~(iGl') is nonnegative and increasing and so is g. Then so is 
n~(X~l. )g. By definition n , (Z< lw)= l ima  rG(X~IcoAOA,); since g is local, the 
same is true for ne(,Gl" )g- We can therefore apply Lemma 4, which 
guarantees the convergence oi"/XA(rC<(Z~I') g) to p(sG(J<l ' )g) .  This con- 
cludes the proof. II 

In the same manner  we prove that ~(Z~ I" ) is a version of E~[Ze I<~]-  

4. A L M O S T  SURE QUASILOCALITY 

We now investigate the quasilocality properties of rt,.(Z~ I" ). We follow 
ref. I, Section 4.5.3. Because ~r~(Ze I') is only one version of E~,[X~ I~-e], to 
prove nonquasilocality of Et,[Z ,. I~-~], we have to show that no function 
that equals 7G()~ I �9 ) p-a.s, is quasilocal everywhere. We say then that 
St~(Je 1-) displays an essential nonquasilocality. Because /x gives nonzero 
probability to any open set, it suffices to investigate the function zG(Z~ l" ) 
on a neighborhood of t/, to search for essential nonquasilocality of  st~(X,, l" ) 
at t/. A neighborhood of t/ is constructed in the following way. Fix a finite 
set A; then 

~G(t/) := { t / ~ :  ~,, = t/,,} (4.1) 

is a neighborhood of r/. 

Proposition 2. No version of E~,[Zol~e] is quasilocal everywhere. 

Proof. The proof  is given in ref. 1. We repeat it here for the sake of  
completeness and because it gives more insight into the properties of 

~<(ze I' ). 
Let A,, := [ - n ,  n] z. Let q be the configuration which sets tU:= 1 on 

parallel rays running from x and y to infinity, perpendicular to the edge e, 
and sets q r = 0 on all other edges. We choose two subsets of o.tG,(t/)" ./ltd,(t/), 
in which an open edge in A,,+ ~\A,, connects the two rays; and 0 ~A,,fr/), 
in which all edges of A,,+ , \A,,  are closed, so the parallel rays cannot  be 
connected no matter  what the configuration outside A,,+~ is. Now, for all 

~'."E x~',,,(t/), ~,"~ x~176 

z..(x. I r ~,') -g~(x .  I r 2,'') = p  P 0 (4.2) 
p + q ( 1  - p ) >  

uniformly in n. 
Since r l H A,,(q) and ~4r~ carry positive p-measure,  it follows that no 

function that equals zG(; G[- )/x-a.s. can be quasilocal at t/. II 
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We set out now to find how large the set of configurations is where 
ne(Xe]') exhibits essential nonquasilocality. It turns out that this set is 
rather small in the measure-theoretic sense. 

Lemma 5. p-a.s, there exists no more than one infinite cluster. The 
same holds for/Z 

Proof As a consequence of the Burton-Keane uniqueness theorem, 19) 
the result follows from translation invariance of p and the so-called finite- 
energy property, i.e., 

0 <  E~,[Ze[ ~ ~] < 1, p-a.s. (4.3) 

But this condition is easily verified from expression (3.8) for ne(Xe[" ) and 
Proposition 1. The same reasoning applies to p. II 

Proposition 3. The function ne(;t'e[') is quasilocal p-a.s. 

Proof. According to Lemma 5, the set QI of configurations where 
there is no infinite cluster or a unique infinite cluster carries full measure. 
Take thus any r/~/2,.  Suppose first that q has no infinite cluster. Then 
there exists some finite set A, e ~ A, for which no site in A is connected to 
A e. But then ne(zel~l)=ne(X~[() whenever q and ( agree inside A. This 
proves locality of n~(X,, [-) at such r/. 

Now take any configuration q ~ t21 that has a unique infinite cluster. 
If  not both x and y are connected to infinity, then again there exists a finite 
set A such that ne(x~lq)=ne(X~[() whenever q and ( agree inside A. So 
suppose that both x and y are connected to infinity. Because of the unique- 
ness of the infinite cluster, there exists now a finite set A such that x and 
y are connected by a path of open edges within A. In that case again 
ne(Xe 1()= ne(Xe I q) for all ( that agree with r/ inside A. Hence ne(X~ 1.) is 
quasilocal for all configurations r/~/21. II 

Because both p and p have no more than one infinite cluster it is now 
clear from expressions (3.9) and (3.11) that kt-a.s, and p-a.s, ne(xel . )=  
7~e(,~e[" ). It follows that n~(Xe[.) is a version of both E~,[X~[~ e] and 
E~[Xe 1 ~ ]  and that ne(Xe 1") is also quasilocal/7-a.s. 
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